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In this paper, we propose a new scheme for the discretization of nonlinear systems using 

Taylor series expansion and the zero-order hold assumption. This scheme is applied to the 

sampled-data representation of a non-affine nonlinear system with constant input time-delay. 

The mathematical expressions of the discretization scheme are presented and the ability of the 

algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional 

representation for nonlinear systems with time-delay enabling existing controller design 

techniques to be applied to them. For all the case studies, various sampling rates and time-delay 

values are considered. 
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1. Introduction 

Control systems with time-delay are likely to 

gain in importance in the near future as Internet 

technology further develops and evolves. There 

are two reasons why time-delay receives special 

attention in the field of control systems. Firstly, 

time-delays are increasing due to the increased 

reliance on communication and the complex 

computations involved in control systems. The 

use of digital controllers in communication sys- 

tems and their increased computational require- 
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ments induces this time-delay. In embedded con- 

trol systems, the effect of time-delay due to 

communication and increased computation can- 

not be ignored. Secondly, control systems with 

time-delays exhibit complex behavior because of 

their infinite dimensionality, even in the case of 

linear time-invariant systems that have constant 

time-delays in the input or states have infinite 

dimensionality when expressed in the continuous- 

time domain. For these reasons, during the last 

few decades it was not possible to apply a con- 

troller design technique having any time-delays 

in the variables. Thus, it is necessary to develop a 

control system design scheme that resolves these 

time-delays. 

The engineering literature dealing with time- 

delayed systems is very extensive. Most of this 

literature deals with linear time-delay control 

systems, and, in particular, with the stability and 

robustness related to time-delay. In a study by 
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Choi et al. (1999), the authors proposed a new 

control scheme applicable to systems with time- 

delay, which is based on the conventional posi- 

tion-position feedback-type controller. The sta- 

bility of this control system is proved using 

scattering theory and compared with that of con- 

ventional systems. Jeong and Lee (1995) propos- 

ed a method of designing a robust time-delayed 

teleoperator robot system based on optimization. 

The proposed teleoperator control system deals 

with the robustness of teleoperation, especially, 

during the contact phase. 

Recently, research into the technique of Time 

Delay Control (TDC) utilizing the estimated un- 

certainties of general nonlinear systems based on 

the time-delay method has been actively pursued. 

Choi and Baek (2002) studied a magnetic levita- 

tion system required to have a large operating 

range in many applications. TDC was applied to 

a single-axis magnetic levitation system and a 

reduced-order observer was utilized to estimate 

the states in the control taw, with the exception of 

the measurable states. Lee and Chang (1999) 

studied the input/output linearization (IOL) 

method using TDC and a time-delay observer. 

This method enables the IOL method to be ap- 

plied to plants even when not all of the states of 

the plant are measurable or the measured plant 

output is very noisy. In Byeon and Song (1997), 

a position control system was developed for a 

throttle actuator system that uses one throttle 

actuation for small volumes and a DC servo 

motor to provide a fast response. In order to drive 

the DC motor, the PWM signal generator and 

PWM amplifier were built and interfaced to the 

motor and controller. Also, the time-delay con- 

trol (TDC) law was used as a basic control algo- 

rithm in this study. A method of varying the 

reference model of the TDC with respect to the 

degree of change in target throttle angle is 

proposed by them. To apply TDC to a real 

system, Kwon et al. (2002) designed a Time 

Delay Controller to guarantee stability. Earlier 

research had established the sufficient stability 

condition of the TDC for general manufacturing 

plants. A new sufficient stability condition for the 

TDC of general manufacturing plants with finite 

time-delay is proposed. 

Hong and Wu (1994) derived sufficient con- 

ditions for the zeros of the polynomial to be either 

inside the unit disk in the complex plane or at 

least for one zero not to be inside the unit disk by 

examining the coefficients of a given polynomial 

in the linear discrete system. Kang and Park 

(1999) experimentally confirmed the fundamental 

dynamic properties of an electrodynamic struc- 

ture. They examined the discretization effects 

required for the conversion of continuous prop- 

erties such as mass, stiffness and surface charge 

into discrete quantities. In the systems considered, 

the linearized characteristics are well-matched 

with the characteristics of the nonlinear systems 

in the sense that the linearized effects dominate 

over the high-order nonlinear terms. 

In general, most if not all industrial controllers 

are currently implemented digitally. In the design 

of model-based digital controllers, both for pro- 

cess and non-process type of systems, two general 

approaches are available. In the first approach, a 

continuous-time controller is designed based on a 

continuous-time system model, followed by a 

digital redesign of the controller in the discrete- 

time domain in order to approximate the per- 

formance of the original continuous-time con- 

troller. In the second approach, a direct digital 

design strategy can be followed based on a 

discrete-time model (sampled-data representa- 

tion) of the system, in which the controller is 

directly designed in the discrete-time domain. It is 

apparent that this alternative approach is attrac- 

tive when dealing directly with the issue of sam- 

pling. Indeed, the effect of sampling on the system- 

theoretic properties of a continuous-time system 

is very important because these properties are 

associated with the design objectives. It should be 

emphasized that in both design approaches, the 

time-discretization of either the controller or the 

system model is necessary. Furthermore, it should 

be noted that in the controller design for time- 

delay systems, the first approach is troublesome, 

because of the infinite-dimensional nature of the 

underlying system dynamics. As a result, the sec- 

ond approach becomes more desirable and will be 

pursued in the present study. 
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This paper extends the well-known time- 
discretization technique for linear t ime-delay 
systems (Franklin et al., 1998; Vaccaro, 1995) 

and affine nonlinear systems(Kazantzis et al., 
2003) to non-affine nonlinear systems. The pro- 

posed discretization method applies the Taylor 

series expansion according to the mathematical 
structure developed for a delay-free nonlinear 

system (Kazantzis and Kravaris, 1997 ; Kazantzis 
and Kravaris 1999). Conventional numerical 

techniques such as the Euler and Runge-Kutta  

methods have traditionally been used for obtain- 
ing the sampled-data representation for original 
continuous-time systems (Franklin et al., 1998), 

which do not have delay. All  of these approaches 
require small time steps, in order to provide the 

required level of  accuracy. Another interesting 
result for the discretization of delay-free non- 

linear systems can be found in the Carleman 

linearization method (Svoronos et al., 1994). 

However, this method is useful only for low- 
dimensional systems. The dimension of a dis- 

cretized system increases rapidly depending on 

the required accuracy of the continuous model 
and the dimension of the continuous system. 

In particular, this paper makes the contributio- 

n : propose a new method for the discretization of 
non-affine nonlinear systems with t ime-delay in 

the control input. Since the resulting discrete 

system is finite-dimensional, existing nonlinear 

control system design techniques can be directly 
applied to it. 

The discretization of an affine nonlinear system 

without t ime-delay will be considered in Sec. 2. 

The discretization of a linear system with time- 
delay is discussed in Sec. 3, and in Sec. 4 the 
affine nonlinear system with t ime-delay is derived 

based on the linear system discussed in Sec. 3. The 
sampled-data representation of the time-delayed 
non-affine nonlinear system, which will be the 

main idea of this paper, is derived in Sec. 5. An 
example is simulated in Sec. 6 and the perform- 
ance of the proposed method is evaluated. 

2. Time-Diseretization of Delay-Free 
Affine Nonlinear Systems 

Initially, delay-free ( D = 0 )  affine nonlinear 

systems are considered with a state-space repre- 

sentation of  the form : 

dx(t) 
dt = f ( x ( t ) )  + g ( x ( t ) ) u ( t ) ,  (1) 

where x ~ X C R  n is the vector of states and X is 

an open and connected set, u ~ R  is the input 

variable and D is a constant time-delay. It is 

assumed that f (x),  g ( x )  are real analytic vector 
fields on X.  

An equidistant grid on the time axis with mesh 

T=tk+l-- tk>O is considered, where [th, tk+a)= 

EkT, (k+ 1) T) is the sampling interval and T i s  

the sampling period. It is assumed that the system 

described in Eq. (1) is driven by an input that is 

piecewise constant over the sampling interval, i. e. 

the zero-order hold (ZOH) assumption holds 

true : 

u(t )  : u ( k T )  =-u(k) :constant (2) 

for k T < t < k T +  T. 
Under the ZOH assumption and within the 

sampling interval, the solution described in Eq. 

(1) is expanded in a uniformly convergent Taylor 

series (Grobner, 1967) and the resulting coeffi- 

cients can be easily computed by taking successive 

partial derivatives of the r ight-hand-side of Eq. 

(1): 

o, T t tk x ( k + l )  = x ( k )  +~--1l ! d~x 
dt ~ 

T ~ 
= x ( k )  + ~.ACZJ(x(k), u(k)) I t 

l = l  

(3) 

where x(k )  is the value of the state vector x at 

time t = t k = k T  and At~(x ,  u) are determined 
recursively by : 

A ttl (x, u) =Y (x) + ug (x) 
0-4 vj (x, u) A t'+11 (x, u) - 

0x 
( f  (X) + ug (X)) 

(4) 

with l----1, 2, 3, .-.. 

The Taylor series expansion of Eq. (3) can 

offer either an exact sampled-data represent- 
ation (ESDR) of Eq. (1) by retaining the full 
infinite series representation of the state vector : 
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x(k+l)=~(x(k),  u(k)) 
T t (5) 

= x ( k )  + 52AVl(x(k),z=, u(k)) I I 

or an approximate sampled-data representation 
(ASDR) of Eq. (1) resulting from a truncation of 
the Taylor series of order N :  

x ( k + l ) = ~ ( x ( k ) ,  u(k)) 
u T l (6) 

= x ( k )  +5-]'AE'l(x(k)'/=l u ( k ) )  l i 

where the subscript of the map a)~ denotes the 

dependence on the sampling period T of the 

sampled-data representation obtained under the 

above discretization scheme, and the superscript 

N denotes the finite series truncation order 

associated with the ASDR of Eq. (6). 

3. T i m e - D i s e r e t i z a t i o n  o f  L i n e a r  

S y s t e m s  w i t h  T i m e - D e l a y  

It is possible to extend the application of the 

Taylor discretization method into the nonlinear 

continuous-time systems, which have constant 

t ime-delay in the input. Here, we recall the 

procedures used for the discretization of  the linear 

system since the discretization of the nonlinear 

system can follow the same principle as that used 

for the linear system. 

dx(t) 
- A x ( t )  + b u ( t - D )  (7) 

dt 

where A ,  b are constant matrices of appropriate 

dimensions and D is the system's constant t ime- 

delay (dead-time) that directly affects the input. 

It is generally recognized that for any time inter- 

val I=[li ,  /s), such that u=ue=constant, the 

following formula holds true: 

x (ts) = exp (A ( t s -  ti)) x (ti) 
~, (8) 

+UcS, exp(A ( t j -r ) )  b.dr. 

Furthermore, let : 

D = q T + 7  (9) 

where q ~ {  0, 1, 2 . . . .  } and 0 <  7--< T. Equiva- 
lently, the t ime-delay D is customarily re- 

presented as an integer multiple of the sampling 

period plus a fractional part of T (Chen, 1984; 

Franklin et al., 1998). Under the ZOH assump- 

tion and the above notation, it is rather 

straightforward to verify that the "delayed" input 

variable attains the tbllowing two distinct values 
within the sampling interval (Franklin et al., 
1998) : 

u(t_D)={u(kT-qT-T)=-u(k-q-1) ifkT<-t<kT+7 (10) 
u(kT-qT)-u(k-q) if kT + 7<t <kT + T. 

As can be readily inferred from Eq. (10), the 

input variable u (t) remains constant within the 

subintervals: [ k T, k T + 7) , [ k T + 7, k T + T), 
to which the above formula Eq. (8) is 

successively applied. In this way, one readily 

obtains : 

If k T < - t < k T + 7 ,  then 

x(kT +7) =exp(AT) x(kT) 

+ u(k_q_ l) fk~r+~exp(A (k T + 7_r)) b.dr (11) 

If kT+7<<-t<kT+ T, then 

x(kT + T) =exp(A(T-7))x(kT +7) 

+u(k-q) frh+Z;Texp(A(kT+ T-r))b'dr 

=exp(A( T- 7))exp(AT)x(k T) +exp(A ( T-7)) 

u(k_q_l) fkr~r+Texp(A(kT+7_r))b.dr (12) 

+u(k-q) fk k+T;rexp(A(kT + T- r)) b.dr 

=exp(AT)x(kT) +Fl'u(k-q-I) + ~'u(k-q) 

where it can easily be verified that the integrals 

~ =  fz_~exp ( A t ) b d r  and if0 = f00 r-rexp (At) bdr 

are independent of the discrete-time index k 
(Franklin et al., 1998; Vaccaro, 1995). The 

above expression Eq. (12) represents the sam- 

pied-data  representation of the original continu- 

ous-time system Eq. (7) with t ime-delay D. No- 

tice, that the value of the state vector at ( k +  1) T 

is a linear combination of the states evaluated at 

k T  and the past values of the input variable u at 

( k - - q - - l )  T a n d  ( k - q )  T. 

4. Time-Discretization of Affine Non- 
linear Systems with Time-Delay 

Single-input nonlinear continuous-time sys- 

tems can be expressed with the tbllowing state- 

space representation of the form: 
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dx(t) 
dt - f ( x ( t ) ) + g ( x ( t ) ) u ( t - D ) .  (13) 

Motivated by the linear approach described 

above, a similar line of thinking is adopted for the 

nonlinear case as well. Indeed, the following 

sampled-data representation can be obtained for 

every subinterval from Eq. (3) by applying the 

Taylor series discretization method to affine 

nonlinear systems with delayed input. First, the 

state vector at k T +  ~" for subinterval [kT, k T +  
9") (Kazantzis et al., 2003): 

x (kT+ ~') =x (kT) + ~ A  ~(x(kT), 
z=l (14) 7 l 

u ( k - q - l ) ) ~ .  =~r(x(kT) ,  u ( k - q - 1 ) )  

where the map ~r  can be derived through a direct 

application of formula Eq. (3), and the subse- 

quent calculation of the corresponding Taylor 

coefficients can be realized through the recursive 

formulas described in Eq. (4). The state vector 

( k +  1) T c a n  also be obtained by using the state 

vector at k T + 7  and the input u ( k - q )  can be 

obtained by using the Taylor discretization meth- 

od for the subinterval [kT+7,  k T +  T). 

x (kT+ T) =x (kT+ 7) + ~ A  z(x(kT+ 7), 
l=l 

u(k-q)) (T-r)~ (15) 
l! 

=¢)r-r(x(kT+7), u(k-q)) 

The functional representation of the coefficient 

A [~] of q)r-, is same as that described in the 

previous procedures, the thus making the com- 

putation unnecessary. The sampled-data repre- 

sentation of the original system Eq. (13) is 

obtained by combining Eqs. (14) and (15). 

x(k+l) =O,(x(k), u(k-q-l))+~A'(q)r(x(k), 
/=1 

u(k-q-l)), u(k-q)) (T-r) '  
l !  (16) 

=~r~(x(k), u(k-q-l) ,  u(k-q)) 
=~)r-r(~r(x(k), u(k-q-l)),  u(k-q)) 

5. Time-Diseretization of Non-Aff ine 
Nonlinear Systems with Time-Delay 

The equations which describe a single input 

non-affine nonlinear system are as follows (Wei 

Lin, 1995) ; 

~ =/0(x)  +gl(x) u+g2(x) u2+...+gL(x) uL(17) 

where x ~ R  n is the state, u ~ R  is the control 

input, 

f o : R " ~ R " ,  g i : R " ~ R  n, i = 1 ,  2 . . . . .  l 

and f : R n × R --) R n are smooth mappings. 

A non-affine system has nonlinear control 

inputs, whereas an affine system has linear con- 

trol inputs. Furthermore, a non-affine nonlinear 

system also can be discretized using Taylor series 

expansion. In this study, the mathematical struc- 

ture of the discretized non-affine nonlinear sys- 

tem can be considered to be the same as that in 

the affine case, since the input u is assumed to be 

constant in the sampling interval. All of the par- 

tial differentials used in the affine case can also be 

used in the non-affine case. Thus, the related 

equations are as follows ; 

, ~ T' d*x[ 

T' 
=x(k) + ~lA['J(x(k), u(k))TV 

x = f o ( x )  + g l ( X ) u + g 2 ( z ) U 2 +  ' ' '  + g l ( x ) U  l 

=AIII(x, u)=f(x, u) (18) 

#:/0(x) X+gl(X)u~+e~(x) u2~ + ... +g/x)u~i 
: (L(x) +gl(x) u+g~(x) u2+... +g~(x) u')i 

3Atll(x, u) 
=At2](x, u): 0x f(x, u) 

The generalized coefficients can be represented 

as follows ; 

At'l(x, u ) = f  (x, u) 
AI~+'](x, u ) -  OAH(x' u) (19) 

Ox f (x, u). 

Now we will consider the time-discretization of 

a non-affine nonlinear system with delayed input. 

Single-input non-affine nonlinear systems with 

input delay can be expressed in the following state 

space representation of the form : 

dx(t) 
dt - - f ( x ( t ) ,  u ( t - D ) ) .  (20) 

From the ZOH assumption and Eqs. 18) and 

(19), we obtain the followings; 
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If k T < t < k T + 7 ,  then 

7 t 
x(kT+r)=x(kT)+~A'(x(kW), u(k-q-1)) l! ( 2 1 )  

=~),(x(kT), u(k-q-1)) .  

If k T + z ~ t < k T +  T, then 

x(kT + T)=x(kT +r) + ~A'(x(kT +7), u(k-q)) (T-r)' 
= I!  ( 2 2 )  

= ~ _ , ( x ( ~ T + ~ ) ,  u(k-q)). 

Also, when the Taylor series expansion is ap- 

plied to each subinterval, the sampled-data 

representations for the non-affine nonlinear sys- 

tem are identical to those described in Eqs. (14) 

and (15). Finally, the discretization method using 

Taylor series expansion can be used for the non- 

affine nonlinear system. 

6. Simulations 

The performance of  the proposed time-discre- 

tization of non-affine nonlinear systems with in- 

put time-delay using the Taylor series expansion 

method is evaluated by applying it to a non-affine 

system. The systems considered exhibit nonlinear 

behavior and it is studied for a broad range of 

values of the sampling period and input delays. 

Reference solutions for the system is required to 

validate the proposed time-discretization method. 

In this paper the Matlab ODE solver is used to 

obtain reference solutions. The ODE solver was 

written based on 4th or 5th order Runge-Kutta  

method. The discrete values obtained at every 

time step using the proposed time-discretization 

method are compared to the values obtained 

using the Matlab ODE solver at the correspond- 

ing time steps. The propriety using Matlab ODE 
solver as the reference model is shown in 

(Kazantzis et al., 2003). The partial derivative 
terms involved in the Taylor series expansion are 

determined recursively. For the case study con- 

sidered these partial derivative terms are calcula- 

ted using Maple and the corresponding Maple 

code listings are included in the Appendix. 

The system considered in this paper is assumed 

to be a single-input non-affine nonlinear system 
(Wei Lin, 1995). 

21 = --Ycl a +xlexp (x2) u ( t - D )  2 
2 z = x 2 2 u ( t - D )  (23) 

The above equation is globally asymptotically 

stabilized by the smooth state feedback control 

law 

x2a (24) 
U -- 1 +xlZexp (xz) 

The system runs for 100second with the initial 

conditions xl (0)= 1.0 and xz (0)=--  1.0. Two para- 

meters, the sampling periods and the time delays, 

are considered while investigating the perform- 
ance of the proposed algorithm. The numerical 

experiments are performed for a fixed truncation 

order, various input time-delays and various 

sampling periods. Throughout this example, the 

truncation order is chosen as N = 3  for all 
simulations since the simulation results show that 

truncation orders greater than 3 do not signi- 

ficantly improve the accuracy. 

First, how the sampling period effects the 

proposed algorithm will be investigated. Three 

different sampling periods, 0.1, 0.05 and 0.01sec, 

are investigated and also it is assumed that the 

corresponding input delays are 0.05, 0.025 and 

0.005sec, respectively. Figure 1 shows the errors 

of the state x; and x2 between the response of the 
proposed algorithm and the Matlab solution. The 

dotted line indicates the errors of states when 

T=0 .1 ,  D=0.05,  the thin line indicates the errors 

when T=0.05 ,  D=0.025,  and finally the thick 

line indicates the error when T=0 .01 ,  D=0.005. 

xlo .J 

?, 

0 5 10 15 20 2S 30 ~ 40 45 50 
t i m  [se¢] 

4.®, . . . . . . . . .  - I.~:0~ 
-0.®4 . J  

time [sec] 

Fig. 1 Response of the proposed algorithm. 
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Table 1 Average error between the Taylor series and 
Matlab for xz 

T=0.1, T=0.05, T=0.01, 
D=0.05 D--0.025 D=0.005 

absolute error 5.66X10 -4 2.76X10 -4 9.28×10 -~ 

relative error 1 X 10 -3 6.2 X 10 -4 4.8 X 10 -4 

Table 2 Average errors between the Taylor series 
and Matlab for xz 

Z=0.1, T=0.05, T=0.01, 
D=0.05 D=0.025 D=0.005 

absolute error 2.3 X 10 -3 1.1 X 10 -a 2.9 X 10 -4 

relative error 4.1 X 10 -a 2.1 X 10 -3 5.55 X 10 -4 

The average errors of states xl and x2 between the 

response of the Taylor method and Matlab solu- 

tion are summarized in Table l and Table 2. The 

performance of the proposed algorithm is better 

when the sampling periods are smaller. 

In the following simulations, the effects of  time- 

delay are investigated for three cases; delay is 

smaller than one sampling period, delay is greater 

than one sampling period and less than two 

sampling periods and the delay is greater than 

two sampling periods and less than three sam- 

pling periods. The error responses are depicted in 

Fig. 2 which shows that the proposed algorithm is 

able to discretize the time-delay nonlinear sys- 

tems. The simulation is accomplished for sam- 

pling period T=0.01  and the time-delays are 

0.005, 0.015 and 0.025sec. The thick line indicates 

the relative error between the response of the 

proposed algorithm and the Matlab solution 

when T'=0.01, D=0.005,  the thin line indicates 

the same error when T=0.01 ,  D=0.015,  and 

finally the dotted line indicates the error when 

T=0.01,  D=0.025. The results show that as the 

time-delays are increases the errors are getting 

larger. 

The performance of the proposed scheme is 

investigated by considering the numerical values 

of the responses in the above simulation. Table 3 

shows the responses computed using the Matlab 

solution and the proposed scheme when the sam- 

piing period is T=0 .01  and the input time-delay 

is D : 0 . 0 0 5 ( q = 0 ) ;  input time-delay is smaller 

than the sampling period. The numerical differ- 

ences between the response of the Matlab solution 

and the proposed scheme for state xl lie in the 

range 0.0006 to 0.0003, and 0.0022 to 0.0001 for 

state Xz. Table 4 shows that results obtained for a 

sampling period T=0.01 and delay D=0.015 

(q = 1). The numerical differences for state xl are 

from 0.0012 to 0.0003 and the differences for state 

xz are from 0.0035 to 0.0001. Similarly the system 

is simulated for T=0.01 and delay D=0.025 

(q =2) .  These discrete-values are shown in Table 

5. The numerical differences for state xl range 

form 0.002 to 0.0001 and those for state x2 range 

from 0.005 and 0.0001. The above numerical ex- 

periments for various combinations of the time- 

x l O "  

4 - -  0 = 0 . 0 1 5  

2 

e= / ~ -  

,; ;s ~ ,5 

x l O  ~ 

time [sec] 

5 ,  . . . .  

0 5 ~0 15 20 25 
time [see] 

Fig. 2 The relative errors for various time-delays 

Table 3 The computation results for T=0.01, 
D=0.005 

state xl state xz 
Time step 

Matlab Maple Matlab Maple 

1000 0 . 2 2 6 8  0 .2266 --0.4032 --0.4029 

2000 0 .1611  0 .1610  --0.3377 --0.3375 

3000 0 . 1 3 1 5  0 .1314 --0.3045 --0.3044 

4000 0 . 1 1 3 8  0 .1137  --0.2830 --0.2829 

5000 0 . 1 0 1 7  0 .1017  --0.2674 --0.2673 

6000 0 . 0 9 2 8  0 .0927 --0.2553 --0.2553 

7000 0 . 0 8 5 8  0 .0858 --0.2455 --0.2455 

8000 0 . 0 8 0 2  0 .0802  --0.2374 --0.2373 

9000 0 . 0 7 5 6  0 .0756  --0.2304 --0.2304 

10000 0 . 0 7 1 7  0 .0717 --0.2244 --0.2243 



1304 Ji Hyang Park, Kil To Chong, Nikolaos Kazantzis and Alexander G. Parlos 

Table 4 The computation results for T=0.01, 
D=0.0t5 

state xl state x2 
Time step 

Matlab Maple Matlab Maple 

1000 0 .2268  0 .2267  --0.4032 --0.4027 

2000 0 .1611  0 .1610  --0.3377 --0.3374 

3000 0 .1315  0 .1314  --0.3045 --0.3043 

4000 0 .1138  0 .1137  --0.2830 --0.2829 

5000 0 .1017  0 .1017  --0.2674 --0.2673 

6000 0 .0928  0 .0927 --0.2553 --0.2552 

7000 0 .0858  0 .0858 --0.2455 --0.2455 

8000 0 .0802  0 .0802 --0.2374 --0.2373 

9000 0 . 0 7 5 6  0 .0756 --0.2304 --0.2304 

10000 0 . 0 7 1 7  0 .0717 --0.2244 --0.2243 

Table 5 The computation results for T=0.0I ,  
D:0.025 

state Xl state x2 
Time step 

Matlab Maple Matlab Maple 

1000 0 .2268  0 .2267 --0.4032 --0.4026 

2000 0 .1611  0 .1610  --0.3378 --0.3374 

3000 0 .1315  0 .1314 --0.3045 --0.3043 

4000 0 .1138  0 .1138 --0.2830 --0.2828 

5000 0 .1017  0 .1017 --0.2674 --0.2673 

6000 0 .0928  0 .0927 --0.2553 --0.2555 

7000 0 .0858  0 .0858 --0.2455 --0.2454 

8000 0 . 0 8 0 2  0 .0802  --0.2374 --0.2373 

9000 0 .0756  0 .0756  --0.2304 --0.2303 

10000 0 .0717  0 .0717  --0.2244 --0.2243 

delay and the sampling-period demonstrate that 

the Taylor expansion scheme discretized non-  

affine nonlinear systems with input time-delays 

quite accurately. 

7. Conclusions 

In this paper, we propose a new scheme for the 

discretizaion of non-affine nonlinear systems that 

have time-delays in their inputs, in order to 

obtain their sampled-data values. This scheme is 

derived using the Taylor series expansion to yield 

a solution to the continuous-time system and the 

input is assumed to be constant in the sampling- 

interval. The mathematical structure of the deri- 

ved system can be expressed in the finite dimen- 

sion with input time-delay. The performance of 

the proposed time-discretization approach is 

evaluated using an example of a non affine non- 

linear system. The input is nonlinear, the sam- 

pling time is assumed to be fixed and various time- 

delays are considered in the computer simulation. 

The computer simulation results show that the 

proposed scheme performs well in the discre- 

tization of non-affine nonlinear systems. 
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Appendix 

• A Maple Code for the first case ( T=0 .1 ,  D =  

0.O5) 

> A [ l ] : = - - x l  ^ 3 + x l * e x p ( x 2 ) * u  ^ 2; 
> B[ l ] :=x2^  2 .  u; 

> for i from 1 to 3 do 
> A I i + l ] : = d i f f ( A [ i ] ,  x l ) * A I I ] + d i f f ( A [ i ] ,  

x2) ,B[I]; 
> B [ i + l ] : = d i f f ( B [ i ] ,  x l ) * A [ 1 ] + d i f f ( B I i ] ,  

x2) * B [ I ] ;  

> end do : 

> T :----0.1:d :=0.05 : 
> H l : = s u m ( A ~ j ] * d ^ j / j  !,j----l..3): 
> H2 :=sum (A[j] :~ (T--d) ^ j/ j  ! , j----- 1..3): 
> H 3 : = s u m ( B [ j ] * d ^ j / j ! ,  j= l . . 3 ) :  H 4 : =  

sum(B[j] * (T--d) ^ j / j  ! , j= l . .3 )  : 
> x l [ O ] : = l :  x 2 [ O ] : = - - l : u [ - I ] : = O :  

> for k from 0 to 1000 do 
> u[k]:  =evalf(  -- (x2[k] ^ 3)/(1 +x l  [k] A 2 * 

exp (x2Ek]))) ; 
> ml [k] :=eval f (x l  [k] +subs((xl  = x l  [k], x2=  

x2[-k], u = u E k - I ] ) ,  HI)) ;  
> mZ[k]:=evalf(xZ[k] +subs((xl  = x l  Ik], x2=  

x2[k], u = u [ k - - I ] ) ,  H3)); 
> x l [k  + l ] : = e v a l f ( m l  [k] +subs((xl  = m i l k ] ,  

x2=m2[k] ,  u = u [ k ] ) ,  H2)); 
> x 2 [ k + l ] : = e v a l f ( m 2 [ k ]  +subs((xl  = m l [ k l ,  

x2=m2[k~,  u = u [ k ] ) ,  H4)); 
> end do : 




